

New trends in veterinary insecticides

Prof. Dr. Mostafa Fayez

By

Professor of Pharmacology Faculty of Vet. Medicine – Suez Canal University

Insecticide

Any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating insects.

Chemical Control: Insecticides

We use insecticide For Only One Reason

Insecticides represent an \$ 8 billion industry

Epidemiology

TRENDS in Pharmacological Sciences

Other pesticide terms

- Ovicide -- kills eggs
- Larvicide -- kills larvae
- Adulticide -- kill adults
- <u>Insect growth regulator</u> -- disrupts normal growth and development of insects
- Dessicants -- cause insect death by dehydration
- Repellents -- repel insects and other arthropods
- Attractants -- attract insects and vertebrates
- Synergists -- chemicals used to enhance the insecticidal activity of other chemicals

Pesticide terms for route of entry

- <u>Stomach poison</u> -- enter orally usually in a food material
- Insect baits -- composed of attractive food and a toxicant
- Dusts -- applied to surfaces pests contact, pest crawls through residue, grooming results in ingestion
- Liquid baits -- boric acid and some rodenticides are water soluble and can be put in water sources of pests

Pesticide terms for route of entry

- **<u>Contact poisons</u>** -- enter through cuticle of insects
 - most pesticides are contact poisons
 - most are lipophilic and enter the insect through the cuticular waxes and oils
- <u>Fumigants</u> -- vapors enter the insect through the spiracles during respiration
 - are true gases at room temperature
 - methyl bromide, sulfuryl fluoride, paradichlorobenzene, napthalene are true fumigants

Considerations in use of insecticides

Nervous system

CONTACT INSECTICIDES

Cuticale

Insects

Livingstone © BIODIDAC

Regal Moth adult of Hickory Horned Devil

Stages of insect development

Lady bird beetle (ladybug)

Larva eating aphids

Hickory Horned Devil

"Hold it right there, young lady! Before you go out, you take off some of that makeup and wash off that gallon of pheromones!"

Preying mantid

Lacewing adult

Flystrike Myiasis

insecticide...?? "choice of insecticide"

Rational Pesticide Use (RPU)

Drugs used

Examples

Organochlorines

- Endosulfan
 - Gamma HCH
 - Gamma BHC

Carbamates - Aldicarb -Carbofuran

Pyrethroids -Tefluthrin

- Deltamethrin
- Lambda
- -cyhalothrin
- Permethrin
- Cypermethrin

Neonicotenoids

- -imidacloprid
- -nitempyram
- acetamiprid
- thiamethoxam

Organophosphates

- -Diazinon
- -Fenitrothion
- -Dichlorvos
- -Dimethoate
- Malathion

Public concern about Insecticide use

~100% of us have some insecticide residue in our bodies

For the Correct use of insecticides, we need to consider:

Insecticides

- Inorganics
 - Ex. Bora-Care, Disodium Octaborate Tetrahydrate
- Botanicals
 - Ex. Pyrethrum
- Synthetic Organics
 - Ex. Pyrethroids
- "Natural"
 - Ex. Avermectins

Botanical Insecticides

Secondary compounds

- Alkaloids
- Terpenoids
- Phenolics
- Glucosinolates
- Etc.

Synthetic Insecticides

Synthetic Insecticides

- Organochlorines
- Organophosphates
- Carbamates
- Pyrethroids
- Neonicotinoids

Biorational Formulations

Biorational Formulations

•Growth regulators

• Pheromones

• Microbial formulations

Microbial Formulations

Uses bacteria, fungi, nematodes, protozoa and viruses

• Mostly used as inundative releases

• Specific for arthropods

Parasitoids –

Chalcid wasps
Cynipid wasps
Ichneumonid wasps
Numerous Diptera

Preying mantid

Lacewing adult

Growth Regulators

Interfere with development

• Disrupt metamorphosis and reproduction

© Edith Smith 2009 www.butterfliesetc.com

• Mediate intraspecific interactions

• Around 50 available for IPM

• Mostly use in association with traps

Classes of Insecticides

Botanical Insecticides

- Sabadilla
- Nicotine
- Quassia
- Unsaturated isobutylamides
- Ryanodine
- Naphtoquinones
- Rotenone
- Sweet flag
- Marigolds
- Pyrethrum
- Azadirachtin
- Essential oils
- Botanical insecticides

Synthetic Insecticides

- Organochlorines
- Organophosphates
- Carbamates
- Pyrethroids
- Neonicotinoids

Biorational Formulations

- •Growth regulators
- Pheromones
- Microbial formulations

Examples

Juvenile Hormones

- Methoprene
- Tebufenozide
- Fenoxycarb
- Pyriproxifen

Chitin Synthesis Inhibitors

- Diflubenzuron
- Hexaflumuron
- Triflumuron

- **Triazine Derivatives**
- Melamine
- Cryomazine

World Health Organization (WHO) Classification of Pesticides by Hazard

	LD 50 for the rat (mg/kg body weight)			
Class	Oral		Dermal	
	Solids	Liquids	Solids	Liquids
la Extremely hazardous	5 or less	20 or less	10 or less	40 or less
Ib Highly hazardous	5 - 50	20 - 200	10 - 100	40 - 400
II Moderately hazardous	50 - 500	200 - 2000	100 - 1000	400 - 4000
III Slightly hazardous	Over 500	Over 2000	Over 1000	Over 4000

Pharmaceutical classification

Never inject the rear. Don't Over Dose Avoid I.M. injections if possible Select sub-Q products when possible

SQ=BEST

Insecticides that Affect the Nervous System

Pyrethrins and Pyrethroids

- Pyrethrum -- dust derived from ground chrysanthemum flowers
- Pyrethrins -- chemicals within pyrethrum that have insecticidal properties

Pyrethrins and Pyrethroids

Pyrethroids -- synthetically produced chemicals with similar chemistry and mode of action as pyrethrins, axonic poisons

- Type I
 - Short residual,
 - Fast flushing, and
 - Quick knockdown,
 - Negative temperature correlation: more effective at low temps
 - Ex.: Allethrin, d-phenothrin, resemethrin

- Type II
 - Long residual,
 - Slower flushing, and
 - Slower knockdown,
 - Better killing power than type 1
 - Positive temperature correlation
 - Ex.: Permethrin,
 cypermethrin, cyfluthrin,
 lambdacyhalothrin

•Synergists -- used to deactivate mixed function oxidases (MFOs) within insects

Pyrethroids Effects

• Action on Human System - Irritant

• Systemic Effects - Minimal

 Irritation Effects - Stinging, burning, itching, tingling, numbness of skin.

MOA: Pyrethroids

- Axonic poisons
- Bind to a protein called the voltage-gated sodium channel
- Normally, the sodium channel opens, causing stimulation of the nerve and closes to end the nerve signal
- Pyrethroids find to the socium channel and prevent it from closing normally
- Result: continuous nerve stimulation
- Symptoms: Tremors, uncoordinated movement

From Valles and Koehler. 1998. Insecticides Used in the Urban Environment: Mode of Action. ENY-282

Nervous System

- Why does this happen?
- Let's look at a "normal" nerve impulse.

Nature Reviews | Genetics

I Vesicles of acetylcholine 2 Imidacloprid 3 Nicotinic receptors blocked open 4 Constant neuromuscular stimulation

Insecticides that Affect the Nervous System

MOA: Carbamates and OPs

- Synaptic poisons
- Carbamates and organophosphorus insecticides bind to an enzyme called acetylcholinesterase (AChE)
- AChE is found at the nerve synapse
- AChE is designed to stop a nerve impulse after it has crossed the synapse

From Valles and Koehler. 1998. Insecticides Used in the Urban Environment: Mode of Action. ENY-282

MOA: Carbamates and OPs

- OPs and carbamates bind to AChE
- This prevents AChE from working (i.e., breaking down Ach)
- Therefore, nerve impulses continue to fire across the synapse
- Symptoms similar to pyrethroid poisoning—tremors and uncontrolled movement

From Valles and Koehler. 1998. Insecticides Used in the Urban Environment: Mode of Action. ENY-282

Cholinesterase Inhibitors

- Organophosphates
- Carbamates

Acetylcholine System

Organophosphate Effects

- Action on Human System Inhibits acetylcholinesterase enzyme in tissues.
- Systemic Effects Headache, dizziness, weakness, shaking, nausea, stomach cramps, diarrhea, sweating.
- Irritation Effects Minimal rashes, but readily absorbed through the skin.
- Delayed/Allergic Effects Loss of appetite,

N-Methyl Carbamates Effects

- Action on Human System Reversible changes in acetylcholinesterase enzyme in tissues.
- Systemic Effects Headache, dizziness, weakness, shaking, nausea, stomach cramps, diarrhea, sweating.
- Irritation Effects Minimal rashes, but readily absorbed through the skin.
- Delayed/Allergic Effects Loss of appetite, weakness, weight loss, and general feeling of sickness.
- Reversible inhibition of AChE

Organophosphates and Carbamates

- Organophosphates
 - Chlorpyrifos*
 - Diazinon*
 - Trichlorfon*
 - Parathion*
- Carbamates
 - Carbaryl (Sevin)
 - Propoxur (Baygon)*

Chemicals which are derived from phosphoric and carbamic acid and bond with cholinesterase Acute toxicity Not persistent Hyper-excitation Insect flips on back with legs twitching Sulfur in formulation often causes strong odor

Organophosphates

Phosphoric Acid

Phosphorothioate

Chlorpyrifos ((Dursban)

Carbamates

Carbamate

Insecticides that Affect the Nervous System

Acetylcholine Receptor

- Mimics acetylcholine on the receptor
 - Nicotinic receptor is a type of ACh receptor that is sensitive to nicotine
- Cannot be broken down by AChE
- Imidacloprid turns nerve impulse on but AChE does not degrade it
- Similar overstimulation as seen with OPs and Carbs

Neonicotinoids

- Imidacloprid (subgroup: pyridylmethylamine)
 - Advantage pet treatment
 - Merit -- turf ornamentals
 - Water soluble
 - Systemic in plants
 - Premise termites
 - Affects insects first by paralyzing mouthparts
 - Bayer Advantage OTC
- Thiamethoxam (subgroup: nitroguanidine)
 - Used in crops
 - Working on urban and landscape/turf/ornamentals label
- (Subgroup: nitromethylene)

MOA: GABA Antagonist

- Phenylpyrazole (fipronil), cyclodienes
- Antagonists of GABA activated chloride channels
- GABA Antagonists: chemicals that bind to but do not activate GAMMA-AMINOBUTYRIC ACID receptors, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID or GAMMA-AMINOBUTYRIC ACID agonists.
- GABA can't bind to receptor
- Doesn't activate channel (doesn't open)
- Interferes with (prevents) the passage of chlorine ions through the channel.
- Concerns with cross resistance with other GABAergic insecticides

GABA Receptor in Central Nervous System

- Phenylpyrazoles or
- Fiproles

MOA: GABA Agonist

- Avermectins
- Bind to GABA (Gamma-Amino-Butyric Acid gated chloride channel
- Opens channel
- Chloride influx
- Cannot reach threshold for action potential
- Causes membrane to hyperpolarize, making it less excitatory, decreasing nerve transmission
- Result: flaccid paralysis and death

Avermectins

- Abamectin
 - Avert -- cockroaches
 - Advance -- ants

Produced from soil microbials. Stomach poison for ants and cockroaches

slow acting low toxicity to mammals

Modes of Entrance into Insect

- Contact dermal through the skin
- Stomach oral through the mouth
- Respiration inhalation through the nose or gills
- Systemic combination of above

Mode of Toxicity in Insects

- Physical poison
- General protoplasmic poison
- Cellular enzyme poison
- Nerve poison
- Growth regulator
- Disease causing agent
- Repellant

Toxicity to humans or nontarget organisms

- Most insecticides have the capacity to affect nontarget organisms
- Same as previously discussed
 - Highly toxic LD_{50} 0 50 mg/kg
 - Moderately toxic LD_{50} 50 500 mg/kg
 - Low toxicity LD_{50} 500 5,000 mg/kg
 - Nontoxic LD_{50} < 5,000 mg/kg

CONTACT INSECTICIDES

Avert Kill

- 22 hours to nerve effects
- 40 hours to kill

When to apply?

Thresholds

• Calendar applications

Reasons for lack of Commercial Development

- Perceived as old fashioned
- Lack of representation on official lists
- Not as dramatic effects as synthetic insecticides
- Inactivation by exposure to air and light
- Problems due to seasonal availability
- Lack of quantitative information regarding dosages
- Lack of quantitative information regarding toxicity

JEFF JOHNSON BIOLOGICAL & MEDICAL VISUALS

Affect synaptic transmission

The Pesticide Treadmill

• Pest resurgence

Secondary pest outbreaks

Pesticide resistance

Toxicity to insects natural enemies

• Most insecticides have the potential to affect populations of beneficial insects.

Environmental hazard

 Environmental hazard of insecticides is generally evaluated as a function of persistence often compared to effectiveness

Resistance/Resurgence Hazard

 The hazard of populations developing resistance and resurging is evaluated for most insecticides

شكراً لحسن الإستماع

TRENDS in Pharmacological Sciences